111-222-333-111-222-333-111-222-333-111-222-333-111-222-333-111-222-333-111-222-333-111-222-333-111

1111

222

333333333

44444

https://testing.saasbase.cn/information/ji-qi-ren/34

作者在文中表示,该网络能够独立控制的属性数量只受到识别器能力的限制,如果你有一个属性的识别器,就可以把它添加到任意的面孔上。在文中实验,研究人员直接训练了一个能调整35个不同的面部属性的latent-to-latent网络,比以前的任何方法都要多。

该系统还纳入了一个额外的保障措施,以防止不想要的「副作用」转换:在没有要求改变属性的情况下,latent-to-latent网络会将一个latent向量映射到自己身上,进一步增加目标身份的稳定持久性。

在过去几年里,基于GAN和编码器/解码器的人脸编辑器的l另一个反复出现的问题是,使用的变换方法往往会降低脸部相似度。

为了解决这个问题,Adobe项目使用了一个名为FaceNet的嵌入式面部识别网络作为判别器,可以将标准的面部识别甚至表情识别系统整合到生成网络中。

人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化

该框架的另一个主要特点是能够在潜空间任意转换。通过提高GAN的空间意识,可以在潜过渡点范围内(range of potential transition points)进行图像修改,但如EQGAN等模型在面对不同材质、纹理的修改时,都需要重新训练模型。

人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化

除了可以接受全新的用户图像外,用户还可以手动「冻结」他们希望在转换过程中保留的元素。通过这种方式,用户可以确保背景等无关因素不发生变化、

属性回归网络由三个网络组成:FFHQ、CelebAMask-HQ和一个由StyleGAN-V2的Z空间采样40万个向量而产生的局部GAN网络。

分布外(Out-of-distribution, OOD)的图像被过滤掉,并使用微软的人脸API提取属性,所得的图像集被分成90/10,剩下72万张训练图像和7.2万张测试图像进行对比。

人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化

实验网络的初始配置可以容纳35个潜变换的方式,但为了对类似的框架InterFaceGAN、GANSpace和StyleFlow进行类似的测试,转换数简化为8个,分别为年龄、秃头、胡须、表情、性别、眼镜、音高和偏角(Yaw).

实验结果和预期相符,在其他竞争的模型架构中,图像合成的结果出现了更大程度的纠缠。例如,在一个测试中,当用户要求改变人物年龄时,InterFaceGAN和StyleFlow甚至把主体的性别都给变了。

人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化

最后量化的实验结果中可以看到,除了在Yaw(头部角度)的实验中,Latent-to-Latent的效果并不理想,其余七个属性的性能基本都处于sota序列。而GANSpace对于年龄和眼镜变化的效果则更优。

人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化

参考资料:

https://www.unite.ai/adobe-research-extends-disentangled-gan-face-editing/